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Abstract

This paper aims at solving the optimal control problem of the dynamic of HBV infection under
treatment using the perturbation iterationmethod. Thismethod serves as a tool to determine the
approximate solutions of nonlinear equations for which exact solutions cannot be obtained. To
test the efficacy of this method, the authors propose to compare the numerical simulation results
with those of the direct method and fuzzy logic strategy. The newly usedmethod for solving the
above optimal control problem is very important since the findings compared to those obtained
from the two other methods are in good agreement with experimental data and they demon-
strate the response drugs to the dynamics of uninfected hepatocytes, infected hepatocytes, and
free virions for a patient suffering from HBV. Since the perturbation iteration method provides
satisfactory results which are close to other used numerical methods, it is an important nu-
merical tool to determine the solution of an optimal control problem. In particular, it provides
optimal trajectories in medicine, biology, and other related scientific fields. For instance, the
response of treatment as control of the human body ensures the health of patients.

Keywords: perturbation iteration; direct fuzzy logic; optimal control; HBV; numerical simula-
tion.
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1 Introduction

One of the major global public health concerns is Hepatitis [35]. It is a liver infection whose
contact with infected blood or infected fluids of the individual body is the mode of transmission.
Hepatitis B virus (HBV) damages the liver through acute hepatitis B infection and chronic hepati-
tis B infection [19]. The difference between them is that the first lasts less than six months whereas
the second lasts six months or longer. In addition, the role of the patient’s immune system suf-
fering from acute hepatitis B infection is to clear the virus from the body so that he/she should
recover completely within a fewmonths. It is important to note that at birth, most infants infected
with HBV manifest chronic hepatitis B infection, and many children are infected if they age be-
tween 1 and 6 years. Furthermore, around 80-90% of infants can be infected in the first year of life
while in the first 5 years of life 30-50% of children infected develop chronic infection. This does
not happen for adults since there is only 5% infected later in life [32]. Genetically, the genotype
mutants occur naturally and the level of serum deoxyribonucleic acid is the identified factor that
influences HBV progression. The replication process of HBV is done in the machinery of infected
hepatocyte cells. The hepatitis B virion can bind to these cells throughmolecular structures on the
surface of viruses (Antigen). The virus is engulfed using the endocytosis process. Once the in-
fection occurs, the body’s immune system starts attacking infected hepatocytes to clean the virus.
This mechanism leads to liver injury since it is damaged by an adaptive immune response, partic-
ularly the virus-specific cytotoxic T lymphocytes (CTLs) which kill the cells that contain the virus.
The antigen-nonspecific inflammatory aggravates the liver damage and the platelets are activated
at the site of infection. Long-term consequences of chronic HBV infection are principally cirrho-
sis and cancer such as hepatocellular carcinoma (HCC) [15, 32] which attacks more than half of
patients worldwide.

In 2015, there were 887,000 deaths due to HBV-related liver disease among 257 million HBV
carriers in the world [28]. In addition, one in four people chronically infected people are at risk
of premature death from cirrhosis or liver cancer [5]. The results of the research show that there
is the impact of epidemic diseases on patients suffering from HBV which is a chronic disease
[8, 11]. The way to reduce the number of HBV infections is to establish a vaccination program,
which is the bats and the cheapest to prevent this liver disease. If it is well implemented, the
incidence rates of childhood HCC are reduced. However, to prevent the replication of HBVs,
hepatitis antiviral drugs are used. They save the liver from cirrhosis and cancer if they are well
administrated. The drugs used to treat chronic HBV are of different types. These include adefovir
dipivoxil, telbivudine, pegylated interferon, entecavir, alpha-interferon, lamivudine, telbivudine
and tenofovir [33]. Mainly, the role of these drugs is to reduce the viral load so that the viral
replication in the lever is decreased [24].

Mathematical models are an important source to support HBV dynamics and its treatment.
They are useful tools to reveal emergent phenomena. The mathematical models enable extrap-
olation beyond scenarios that can be investigated because the knowledge base from the study
and data can be greatly expanded throughout mathematical modeling which provides answers
to questions otherwise, they are taken as unanswerable. Anderson and May used a simple math-
ematical model that shows the effects of carriers on the transmission of HBV [4]. The strategy to
prevent HBV in New Zealand has been developed by Medley et al. using a mathematical model
[25, 26] while an age structure model is proposed by Zhao et al. to predict the dynamics of HBV
transmission and evaluate the long-term effectiveness of the vaccination program in China [36].
The control measures and the impact of vaccination on HBV infection have been explored by Pang
et al. throughout their developed mathematical model [30]. The development of optimal thera-
peutic strategies for biomedical problems should be based on control theory. Taking a treatment
regimen as a control variable to minimize the effects of a medical condition does this mechanism.
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Moreover, the required drug doses of treatment for HBV-infected patients are determined using
an optimal control theory [20, 33]. In this regard, Bhattacharyya and Ghosh [6], Kar and Batabyal
[22], and Kar and Jana [23] developed an optimal control theory to solve biological problems.
Particularly, the model predictive control (MPC) method is used to design an optimal treatment
for HBV [16]. The delayed hepatitis B epidemic model based on stochastic analysis is developed
by Din Anwarud et al.[12].

In addition, Din Anwarud developed a mathematical model for controlling COVID-19 which
has effects on HBV patients [11]. The factors influencing HBV have been analyzed through the
mathematical models developed by the same author in collaboration with co-workers [9, 14]. Us-
ing the epidemic model, Din Anwarud analyzed The stochastic bifurcation analysis and stochastic
delayed optimal control [8]. The mathematical model can also be investigated using other meth-
ods. These include fractional order derivatives [7, 27]. The mathematical model equations can
also be discretized using other base polynomials such as ones based upon Chebyshev polynomi-
als or integrals [1, 21]. Recently, HBV has been the important focus of authors and researchers to
capture the Caputo type fractional operator [10, 13].

This paper aims at the perturbation iteration method to solve the optimal control problem for
investigating the dynamics of HBV. To test the efficacy of this method, numerical results are com-
pared with those obtained using the direct method and an approach integrating fuzzy logic. Note
that the optimal control problem involves the mathematical process of determining control and
state trajectories for a dynamic system over a period of time to minimize a performance function.
Different methods such as Caputo Fractional Derivative [17] and Four-Step Predictor-Corrector
Method [31] can be used to solve this problem. One of them is the perturbation method. The
advantage of this method is to determine the approximate solutions of nonlinear equations for
which exact solutions cannot be obtained. In addition, the techniques of this method are useful
for demonstrating, predicting, and describing phenomena in vibrating systems that are caused by
nonlinear effects. Implemented using mathematical software such as Matlab, the direct method
is a tool that can often provide solutions quickly and at a reduced time-consuming. This is an ad-
vantage of this method. Refer to [18] for the details of direct methods and approaches integrating
fuzzy logic.

This paper focuses on describing the algorithm of the perturbation iteration method. The fol-
lowing is the structure of this paper. Section 2 deals with themodel equations and optimal control
problem. The description of the perturbation iterationmethod algorithm is in this section. Section
3 focuses on the application of the perturbation iteration method algorithm to solve an optimal
control problem of HBV dynamics. Section 4 describes the numerical simulations while Section 5
presents concluding remarks.

2 Methods

2.1 Problem setting

The mathematical model equations we present have been proposed in [2] but Elaiw et al. in-
corporated the effect of two antivirals treatment for formulating an optimal control problem [16].
The model equations are as follows;

dT

dt
= s− qT + aT

[
1− T

Tmax

]
− βe−u1

TV

1 + bV
, (1)

229



M. S. D. Haggar & J. M. Ntaganda Malaysian J. Math. Sci. 17(3): 227–239(2023) 227- 239

dI

dt
= βe−u1

TV

1 + bV
− δI, (2)

dV

dt
= pe−u2I − cV, (3)

where variables, parameters and particular functions are described in Table 1.

Table 1: Description of variable, parameters and particular chemotherapeutic functions.

Variable Description
T (cells/dl) Uninfected hepatocyte cells concentration
I (cells/dl) Infected hepatocyte cells concentration
V (IU/ml) Free virions concentration

Functions of chemotherapy
e−u1 Chemotherapeutic function for preventing virus

from infecting cells
e−u2 Chemotherapeutic function for preventing infected cells

from producing the new viruses
Parameter

s Rate of production of uninfected hepatocytes
q Rate of death rate of uninfected hepatocytes
a The maximum rate of proliferation of target cells

Tmax Maximum concentration of uninfected hepatocytes
to shut off the proliferation

p Rate of production of free virions from infected hepatocytes
β Rate of infection to characterize infection efficiency
b Positive constant of saturation functional response
δ Rate of death of infected hepatocytes
c Rate to clear viral particles

In (1)-(3), we set the state vector as E = (T, I, V )t. The health of the patient is improved if
his/her status is around the steady stateEe = (Te, 0, 0)

t where Te is the concentration of uninfected
hepatocytes of healthy subject. Furthermore, we can formulate the cost function in the following
manner.

Find u∗
1(t) and u∗

2(t) solution of

min
u1,u2∈[0,1]

J(u1, u2) =

∫ Tf

0

qT (T − T0)
2
+ quu1(t)

2 + qvu2(t)
2, (4)

subject to the system (1)-(3).

Thus, the solution of optimal control problem (4), equations (1)-(3) can be solved using differ-
ent mathematical methods. In [18], the details about discretization, numerical solution of direct
methods and approach integrating fuzzy logic are described. In this work, we focus on the pertur-
bation iteration method. The goal is to compare the obtained results of the perturbation iteration
method with ones obtained using direct methods and approach integrating fuzzy logic. This al-
lows investigation of the efficacy of the perturbation iteration method.
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2.2 Description of algorithm PIA(1,m)

Perturbation iteration method (PIM) is one of among known numerical methods developed
in 2010 by Aksoy et al. [34]. After introducing correction terms of first derivatives, PIM com-
bines perturbation expansions and Taylor series expansions of order one to produce an iteration
scheme [3, 34]. Consequently, PIA(1, 1) denotes the algorithm of PIM. Although in this paper we
implement PIA(1, 1) on (4), equations (1)-(3), PIM is described by discussing the general case
PIA(1,m)where correction terms in the Taylor series expansion is m.

Let us write vector state,
y = (y1, y2, ..., yK)T ,

and a system of ODEs of first order of the form,
E1 ≡ (y1, y1, y2, ..., yK , ε, t) = 0,
E2 ≡ (y2, y1, y2, ..., yK , ε, t) = 0,

...
EK ≡ (yk, y1, y2, ..., yK , ε, t) = 0,

(5)

where ε denotes the perturbation parameter and t is the independent variable. Thus, the compact
form of (5) is

Ek ≡ Ek (yk, yj , ε, t) = 0, k = 1, 2, ...,K, j = 1, 2, ...,K, (6)

and its approximate solution is
yk,n+1 = yk,n + εyck,n, (7)

where the approximate solution is given at order n. Around ε = 0, Taylor series expansion of (6)
becomes

Ek =

m∑
i=0

1

i!

[(
d

dε

)i

Ek

]
ε=0

εi, k = 1, 2, ...,K, (8)

where
d

dε
=

∂yk,n+1

∂ε

∂

∂yk,n+1
+

 K∑
j=0

∂yj,n+1

∂ε

∂

∂yj,n+1

+
∂

∂ε
. (9)

Thus, iterative equation of order (n+ 1) is

Ek (yk,n+1, yj,n+1, ε, t) .

Hence, the first order differential equation becomes

Ek =

m∑
i=0

1

i!


yck,n

∂

∂yk,n+1
+

 K∑
j=0

ycj,n
∂

∂yj,n+1

+
∂

∂ε

i

Ek


ε=0

εi, k = 1, 2, ...,K, (10)

obtained after substituting (9) into (8). Note that to have an iteration solution of order (n+1)we
should solve (10).

Note that PIA(1,m) can also be generalized to solve a system of ODEs for n correction terms.
Then the algorithmwould be PIA(n,m) . The details of this algorithm, can be found in [29]. This
means that PIA(1,m) is simple algorithm of the perturbation-iteration method. To implement
this simple algorithm, we consider the following differential equation of order one

E(y, y, ε) = 0, (11)
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where y = y(t). Setting one term of correction in perturbation expansion, we obtain

yn+1 = yn + εyc, (12)

where we have taken iteration of order n, perturbation parameter ε and the correction term εyc.
Substituting (12) into (11) we get

E(yn, yn, 0) +
∂E(y, y, 0)

∂y
εyc +

∂E(yn, yn, 0)

∂y
εyc +

∂E(yn, yn, 0)

∂ε
ε = 0. (13)

After reorganizing (13), we get

yc +
Ey

Ey
yc = −εEε + E

εEy
, (14)

where at ε = 0 the derivatives calculated by setting Ez =
∂E

∂z
. Using integrating factor

µ(t) = exp

(∫
Ey

Ey
dt

)
,

the equation (14) becomes
d

dt
(µ(t)yc) = µ(t)

(
−εEε + E

εEy

)
,

so that,

µ(t)yc = −
∫

µ(t)

(
εEε + E

εEy

)
+ C.

Hence,

yc =
C

µ(t)
− 1

µ(t)

∫
µ(t)

(
εEε + E

εEy

)
, (15)

= C exp

(
−
∫

Ey

Ey
dt

)
−
[∫ (

εEε + E

εEy

)
exp

(∫
Ey

Ey
dt

)]
exp

(
−
∫

Ey

Ey
dt

)
. (16)

Replacing (16) into (12), the iteration scheme yields,

cclyn+1 = yn + εCnC exp

(
−
∫

Ey(yn, yn, 0)

Ey(yn, yn, 0)
dt

)
−

[∫ (
εEε(yn, yn, 0) + E(yn, yn, 0)

εEy(yn, yn, 0)

)
(17)

exp

(∫
Ey(yn, yn, 0)

Ey(yn, yn, 0)
dt

)]
exp

(
−
∫

Ey(yn, yn, 0)

Ey(yn, yn, 0)
dt

)
. (18)

3 Implementation of Algorithm PIA(1, 1) on (4), (1)-(3)

To illustrate the algorithm PIA(1, 1), we consider a system of first-order differential equations
in the following form:

E
(
Ṫ , T, I, V, ε

)
= Ṫ − s+ qT − εaT

[
1− T

Tmax

]
+ εβe−u1

TV

1 + bV
,

G
(
T, İ, I, V, ε

)
= İ − εβe−u1

TV

1 + bV
+ δI,

F
(
T, I, V̇ , V, ε

)
= V̇ − pe−u2I + cV.
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In addition, we consider that:  E = 0,
G = 0,
F = 0.

(19)

For PIA(1, 1), we set y = (T, I , V )t state vector and we take one correction term from the pertur-
bation expansion,

yn+1 = yn + εycn. (20)

Taking Yy =
dY

dy
and substituting (20) into (19), then, expanding in a Taylor series gives,


E
(
Ṫ , T, I, V, 0

)
+ ET

(
Ṫ , T, I, V, 0

)
εT c

n + EṪ

(
Ṫ , T, I, V, 0

)
εṪ c

n + εEε = 0,

G
(
T, İ, I, V, 0

)
+GI

(
T, İ, I, V, 0

)
εIcn +Gİ

(
T, İ, I, V, 0

)
εİcn + εGε = 0,

F
(
T, I, V̇ , V, 0

)
+ FV

(
T, I, V̇ , V, 0

)
εV c

n + FV̇

(
T, I, V̇ , V, 0

)
εV̇ c

n + εVε = 0.

After calculation we obtain,

Ṫn − s+ qTn + εqT c
n + εṪ c

n − εaTn

[
1− Tn

Tmax

]
+ εβe−u1

TnVn

1 + bVn
= 0,

İn + δIn + δεIcn + εİcn − εβe−u1
TnVn

1 + bVn
= 0,

V̇n − pe−u2I + Vn + cεV c
n + εV̇ c

n = 0,

that is 

Ṫ c
n + qT c

n =
−Ṫn + s− qTn

ε
+ aTn

[
1− Tn

Tmax

]
− βe−u1

TnVn

1 + bVn
,

İcn + δIcn =
−İn − δIn

ε
+ βe−u1

TnVn

1 + bVn
,

V̇ c
n + cV c

n =
−V̇n + pe−u2In − Vn

ε
.

(21)

Thus, the matrix form of the system (21) becomes

Y c
n = AY c

n +Mε, (22)

where

A =

 q 0 0
0 δ 0
0 0 c

 andMε =



−Ṫn + s− qTn

ε
+ aTn

[
1− Tn

Tmax

]
− βe−u1

TnVn

1 + bVn

−İn − δIn
ε

+ βe−u1
TnVn

1 + bVn

−V̇n + pe−u2In − Vn

ε


.

If Qc
nh

(t) denotes the fundamental matrix of homogeneous system (22), a particular solution
Y c
np
for this system is

Y c
np
(t) = Qc

nh
(t)

∫ t

t0

(
Qc

nh
(τ)

)−1

Mε(τ) dτ, (23)
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and the general solution is

Yn(t) = eA(t−t0)Yn(0) +

∫ t

t0

eA(t−τ)Mε(τ)dτ, (24)

= eA(t−t0)Yn(0) + eAt

∫ t

t0

e−AτMε(τ)dτ, (25)

where
eAt = Qc

nh
(t)

(
Qc

nh
(0)

)−1

.

If n = 0, the fundamental matrix solution of homogeneous linear system (21) and its inverse are

Qc
0h
(t) =

 eqt 0 0
0 eδt 0
0 0 ect

 and
[
Qc

0h
(t)

]−1

=

 e−qt 0 0
0 e−δt 0
0 0 e−ct

 .

Then Qc
0h
(0) = I3 (Identity matrix of order 3) and we have

eAt =
[
Qc

0h
(t)

][
Qc

0h
(0)

]−1

= Qc
0h
(t).

SettingMε =
(
M1,ε,M2,ε,M3,ε

)t

,where

M1,ε(t) =
−Ṫn + s− qTn

ε
+ aTn

[
1− Tn

Tmax

]
− βe−u1

TnVn

1 + bVn
,

M2,ε =
−İn − δIn

ε
+ βe−u1

TnVn

1 + bVn
,

and

M3,ε =
−V̇n + pe−u2In − Vn

ε
.

We have

e−AtMε =

 e−qtM1,ε

e−δtM2,ε

e−ctM3,ε

 and
∫ t

0

e−AtMε =


−1

q
M1,εe

−qt

−1

δ
e−δtM2,ε

−1

c
e−ctM3,ε

 .

Hence,

cclycnp
(t) = eAt

∫ t

0

e−AtMε, (26)

=

 eqt 0 0
0 eδt 0
0 0 ect




−1

q
M1,εe

−qt

−1

δ
M2,εe

−δt

−1

c
M3,εe

−ct

 , (27)

=


−1

q
M1,ε

−1

δ
M2,ε

−1

c
M3,ε

 . (28)
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In addition, we have

ynh = eAtyn(0) =

 eqtT (0)
eδtI(0)
ectV (0)

 .

Finally, the successive iterations are given by

yn+1(t) = ynh(t) + εycnp(t), (29)

and the solution of optimal control problem (4), (1)-(3) is obtained if the cost function is mini-
mized.

4 Numerical Simulation

The implementation in Matlab uses its built-in function “fmincon” which helps solve an op-
timal control problem such as (4) and (29). Since this function is used to minimize constrained
cost functions. To obtain the solution we consider the parameters given in Table 2.

Table 2: The used parameters [18].

Parameter a q s δ β c p b Tmax

Value 0.108 0.072 36 0.5 0.001 3 5 0.01 1500

In the numerical simulation, we consider the unhealthy subject with T (0) = 200 Cells/dl,
I(0) = 300 Cells/dl and V (0) = 500 IU/mL. The starting value of the controls u1 and u2 is 1
if treatment is absent and is 0 in the case of maximal use of therapy. To investigate the efficacy
of the perturbation iteration method, the numerical results implemented using this method are
compared with one calculated by the direct method and fuzzy logic strategy [18]. Figures 1 and
2 illustrate the numerical simulation results.

Figure 1: Trends of chemotherapies u1 (a) and u2 (b). Dotted line, dashed line and solid line curves show the variation of chemotherapy
for the direct method, the fuzzy logic techniques and perturbation iteration method respectively.

The impact of chemotherapy is shown in the Figure 1 which illustrates both u1 (Figure 1(a))
and u2 (Figure 1(b)). These figures justify the trends during 12 months of treatment consumma-
tion by the patient. Their effect on the HBV dynamics is to prevent the virus and infected cells
from producing new viruses respectively. The response of the administrated chemotherapy to
the dynamics cells in HBV infection provides the trends of uninfected hepatocytes (Figure 2(a)),
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Figure 2: Trends of the concentration of uninfected hepatocytes (a), infected hepatocytes (b) and free virions (c). Dotted line, dashed
line and solid line curves show the variation of chemotherapy for the direct method, the fuzzy logic techniques and perturbation iteration
method respectively. The horizontal solid line illustrates the normal variation of concerned parameter.

infected hepatocytes (Figure 2(b)) and free virions (Figure 2(c)) respectively. The controls u1

and u2 are decreasing gradually from 1 (treatment is absent) and so that their variation is close
to the value 0 (This value is the lowest and it means an appropriate use of therapy). During the
first month of treatment uninfected hepatocytes increase to their higher value before decreasing
to reach the normal number of cells of healthy subject (Figure 2(a)) due to action of therapeutic
drugs. This response of therapy on HBV justifies the effectiveness of drugs to this liver infection
that deals with this change in a chronically infected person’s e-antigen status from positive to neg-
ative. The decrease of both infected hepatocytes and free virions after onset of therapeutic drugs
to normal value is shown in Figures 2(b) and 2(c). The important role of treatment on HBV in-
cluding hepatocellular carcinoma (HCC) is to boost the quality of specific immune responses and
magnitude to improve the health of HBV patients to eliminate this liver infection and maintain
immune homeostasis in patients. The basis for comparison of the three methods illustrated in Fig-
ures 1 and 2 shows that the results of the perturbation iterationmethod are close to two other used
methods: the direct method and the fuzzy logic techniques. Consequently, the perturbation itera-
tion method is an important tool to solve optimal controls problems. The findings of this work are
rather satisfactory. Particularly, the response of the HBV infection to treatment can be formulated
using an optimal control problem. Since the health of the patient under treatment shows reduced
risk, therapeutic drugs play a crucial role so that any patient improves his/her health conditions.

5 Conclusion

In this work, three comparisons of numerical approaches have been made to find the optimal
trajectories of uninfected hepatocytes, infected hepatocytes and free virions. These trajectories are
the response ofHBV treatment to the trends of hepatitis B dynamics. Particularly, the focus ismade
on the perturbation iteration method, which gives the optimal trajectories of HBV parameters in
the same way as the two other methods. These methods provide satisfactory results, which are
closed. Therefore, an optimal control problem can be solved using these methods. In particular,
the response to treatment ensures the health of patients by providing optimal trajectories.
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